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Nearly every orthostructure that has been proposed as a model for a logic of 
propositions affiliated with a physical system can be represented as an interval 
effect algebra; that is, as the partial algebra under addition of an interval from 
zero to an order unit in a partially ordered Abelian group. If the system is in a 
state that precludes certain elements of such an interval, an appropriate quotient 
interval algebra can be constructed by factoring out the order-convex subgroup 
generated by the precluded elements. In this paper we launch a study of the 
resulting quotient effect algebras. 

I. INTRODUCTION 

Effect algebras (Foulis and Bennett, 1994; Greechie and Foulis, 1995), 
or what is essentially the same thing, D-posets (K6pka, 1992; Navara and 
PtAk, 1993; K6pka and Chovanec, 1994), arose partly as an answer to the 
problem of representing fuzzy or unsharp events (Dalla Chiara and Giuntini, 
1989; Giuntini and Greuling, 1989; Mesiar, 1993), partly in connection with 
positive-operator-valued (POV) measures in stochastic quantum mechanics 
(Schroeck and Foulis, 1990), and partly in response to the problem of forming 
tensor products Of quantum logics (Randall and Foulis, 1981; Pulmannov~, 
1985; Kl~iy et al., 1987; Bennett and Foulis, 1993; Dvure~enskij, 1994; 
Dvure~enskij and Pulmannovfi, 1994; Foulis et aL, 1994). Boolean algebras, 
orthomodular lattices, orthomodular posets, and orthoalgebras are special 
kinds of effect algebras. Effect algebras can be combined by forming Cartesian 
products, horizontal sums, and tensor products (Foulis et al., 1994). However, 
until now, no comprehensive theory of quotients has been worked out, 
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although a possible basis for such a theory has been sketched in Foulis et 
aL (1996). 

Propositions about a physical system b ° tend to band together to form 
an effect algebra E, and the physical states of b ° give rise to probability 
measures on E. If b ° is in a physical state + with corresponding probability 
measure ~o: E --~ [0, 1] C R, then the propositions in I = to-I(0) are 
(probabilistically) impossible. In accordance with standard practices in classi- 
cal mathematical logic, one ought to be able to form a suitable "quotient 
effect algebra" E/I by somehow "factoring out" the impossible propositions, 
thus obtaining a representation for the propositions affiliated with b ° when 
it is known to be in the state ~. 

Effect algebras that can be represented as the interval from zero to a 
positive element in a partially ordered Abelian group are called interval effect 
algebras (Bennett and Foulis, n.d.). These form a large and important subclass 
of the class of all effect algebras and, for this subclass, a natural notion of 
quotient suggests itself. In this paper, we launch a study of such quotients, 
showing that in some ways they are well behaved and in other ways they 
are not. It is hoped that our study will contribute toward a solution of 
the problem of formulating an appropriate general theory of quotients for 
effect algebras. 

2. BASIC DEFINITIONS 

The general notion of an effect algebra is as follows. 

Definition 2.1. An effect algebra is a system (E, G,  0, u) consisting of 
a set E, a partially defined binary operation • on E, and two special elements 
0, u E E called the zero and the unit such that, for all p, q, r ~ E: 

(i) (Associative Law). If p G q and (p • q) G r are defined, then (q G 
r) and p • (q • r) are defined and 

( p O q )  O r  = p @ ( q G r )  

(ii) (Commutative Law). If p G q is defined, then q G p is defined and 
p G q = q O p .  

(iii) (Orthosupplementation Law). For each p ~ E, there is a unique q 
E, such that p • q is defined and p G q = u. 

(iv) (Zero-Unit Law). If u • p is defined, then p = 0. 

Unless confusion threatens, we say that E is an effect algebra when we 
really mean that (E, O, 0, u) is an effect algebra. Also, when we write an 
equation such as p ~ r = q, we are asserting both that p • r is defined and 
t h a t p O r =  q. 
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Example 2.2. Let ~ be a Hilbert space and let E ( ~ )  be the set of all 
self-adjoint operators A on ~ such that 0 --< A <- 1. If A, B ~ E(~) ,  define 
A O B i f f A  + B -  1, i n w h i c h c a s e A O B : = A  + B. (We use := to mean 
equals by definition.) Then E ( ~ )  is an effect algebra called the standard 
effect algebra for ~ .  

For the remainder of this section, we assume that E is an effect algebra 
with unit u. If p, q ~ E, we say that p is orthogonal to q and write p _L q 
iff p • q is defined. An element p e E is called isotropic iff p _L p, that is, 
iff p • p is defined. The unique element q E E such that p G q = u is 
called the orthosupplement of p and written as p '  := q. In Example 2.2, if 
A e E(~) ,  then A' = 1 - A and A is isotropic iff 2A -< 1. 

The relation - defined on E by p ----- q iff p • r = q for some r ~ E 
is a partial order on E such that 0 <-- p <--- u for all p E E. The mapping ': 
E ---) E is an order-reversing involution on E and p _L q ¢=> p --< q'. We use 
standard order-theoretic terminology in connection with the poset (E, -<). 
For instance, if 0 is the only element r E E for which r <- p, q, we say that 
p and q are disjoint. 

An orthoalgebra (OA) is the same thing as an effect algebra with no 
nonzero isotropic elements (Foulis et al., 1992), an orthomodularposet (OMP) 
is the same thing as an OA in which the O-sum of two orthogonal elements 
is their supremum, and an orthomodular lattice (OML) is an OMP in which 
any two elements have a supremum (Foulis and Bennett, 1994). A Boolean 
algebra is the same thing as an OML in which disjoint elements are 
orthogonal. 

A subset A of E is called a sub-effect algebra of E iff 0 e A, A is closed 
under orthosupplementation, and A is closed under the partial binary operation 
O. Obviously, a sub-effect algebra A of  an effect algebra E is an effect algebra 
in its own right under the restriction to A of the partial operation O. 

If F is a second effect algebra, then a mapping d~: E ---) F is called 
a morphism iff it preserves G and maps unity to unity. By definition, a 
homomorphism is a morphism that preserves disjoint pairs. A morphism qb: 
E ---) F is called a monomorphism iff for p, q E E, qb(p) -< qb(q) ~ p -< q. 
An isomorphism is a surjective monomorphism. 

If qb: E ~ F is a morphism, it is clear that qb(0) = 0 and that, for p 
E, ~ (p ' )  = ~(p) ' .  Furthermore, p --< q ~ qb(p) ----- d~(q). Simple examples 
show that, in general, ~(E) need not be a subalgebra of  F. If  qb: E --~ F is a 
monomorphism, then p _L q iff qb(p) _L qb(q). Furthermore, if qb is a monomor- 
phism, then qb(E) is a sub-effect algebra of F. 

Definition 2.3. An ideal is a nonempty subset I of E such that for all 
p , q  ~ E w i t h p  I q, p ~ q  ~ I ¢ : ~ p , q  E I. 
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Thus, a nonempty subset I of  E is an ideal iff it is an order ideal in (E, 
-<) and it is closed under the partial binary operation G. 

Example  2.4. If ~: E ---> F is a morphism, then I :=  ~ - l (0 )  is an ideal 
in E called the effect kernel  of  d~. 

3. PARTIALLY O R D E R E D  A B E L I A N  G R O U P S  

Although much of  the material in this section is well known in the 
theory of ordered algebraic structures, we sketch it here for convenience and 
to establish our notation. Omitted proofs can be found, for instance, in Chapter 
1 of Goodearl (1986). In what follows, we assume that G is an additively 
written, partially ordered Abel ian group with posi t ive cone G + : = { g E G I0 
< - g l .  

If H is a subgroup of  G, then H is a partially ordered Abelian group in 
its own right under the restriction to H of the partial order -< on G. We refer 
to this as the induced partial order on H and to the corresponding positive 
cone H + = H n G + as the induced posi t ive cone. For instance, in the additive 
group R of real numbers the s tandard posi t ive  cone 17, + consists of the real 
numbers that are nonnegative in the usual sense, the integers Z form an 
additive subgroup of R, and the induced positive cone is Z + = Z n R +. 

If X C_ G, we define (X) to be the subgroup of  G generated by X and 
denote by (a) the cyclic subgroup of G generated by a ~ G. A subgroup H 
of G is said to be directed iff for all a, b E H, there exists c ~ H such that 
a , b < - c .  

Lemma  3.1. Let H be a subgroup of  G and let H ÷ = H n G ÷. Then the 
following conditions are mutually equivalent: 

(i) H is directed. 
(ii) n =  n ÷ -  n ÷. 
(iii) H = (H+). 
(iv) 3X C_ G ÷ with H = (X). 

Corollary 3.2. G -- (G ÷) iff G is directed. 

A subgroup H of G is said to be order convex  iff, for all a, b ~ G, 0 
< - a < - - b  ~ H ~ a  E H. 

Theorem 3.3. Let H be a subgroup of  G. Then the following conditions 
are mutually equivalent: 

(i) H is order convex. 
(ii) a, c ~ H , b  ~ G , a < - b  <- -c=c ,b  E H. 
(iii) If Q is an Abelian group and 6: G ---> Q is a group homomorphism 

with ker(~) = H, then Q can be organized into a partially ordered Abelian 
group with Q+ = ~(G÷). 
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(iv) There is a partially ordered Abelian group Q and a group homomor- 
phism 6: G ~ Q such that I~(G +) C_ Q+ and H = ker(t~). 

The intersection of order-convex subgroups of G is again an order- 
convex subgroup of  G. 

Definition 3.4. If X is any subset of  G, denote by ocs(X) the intersection 
of all order-convex subgroups of  G that contain X. Also, let ssg(X) be the 
subsemigroup of G consisting of  0 and all sums of  finite sequences of  elements 
in X. 

Lemma 3.5. Let X be a subset of  G ÷. Then: 
(i) ocs(X) = ocs(ssg(X)) = {h e GI3y  e ssg(X), - y  -- h <- y}. 
(ii) ocs(X) is a directed subgroup of  G. 

An element u E G + is called an order unit iff for every g E G, there 
exists n e Z + such that g <- nu. By Lemma 3.5, u e G + is an order unit iff 
ocs({u}) = G; hence, if G admits an order unit, then, by Corollary 3.2, G 
is directed. 

The material that follows pertains to the subjects under consideration 
in this paper and is not explicitly treated in the standard literature on partially 
ordered algebraic structures. 

Definition 3.6. Let u e G ÷. 
(i) We define the interval G+[0, u] := {p e G I0 -< p -< u}. 
(ii) The element u is generative iff G ÷ = ssg(G+[0, u]) and G = (G+[0, u]). 

Thus, an element of  the positive cone is generative iff it generates the 
positive cone as a subsemigroup and, in turn, the positive cone generates 
the group. 

Lemma 3.7. If u e G ÷ and G = (G+[0, u]), then u is an order unit. 

Proof Suppose g e G = (G+[0, u]). Then there are elements ab  a2, 
. . . .  a,, bl, bz . . . . .  b,, e G+[0, u] such that g = ~,i a i  - -  ~ , j  bj <- "~,i ai <- nu. • 

As a consequence of  Lemma 3.7, every generative element of  G + is an 
order unit. If G is lattice ordered, then every order unit is generative; otherwise, 
as the following example shows, order units are not necessarily generative. 

Example 3.8. If G = Z as a partially ordered Abelian group with the 
nonstandard positive cone G ÷ := {m • ZIm - 2 • Z ÷} U {o}, then 2 is 
an order unit in Z, but it is not generative. 

Lemma 3.9. Let u • G ÷ be a generative order unit and let H be an order- 
convex directed subgroup of  G. Then 

H = (H n G+[0, u]) 
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Proof By Lemma 3.1, H = (H n G+), so it will be sufficient to prove 
that H n G + c_ (H n G+[0, u]). Let h • H n G +. Since u is generative, h 
• G ÷ = ssg(G+[0, u]) implies that there is a finite sequence a~, az . . . . .  an 
E G+[0, u] such that h = Ei ai. For e a c h j  = 1, 2 . . . . .  n, we have 0 -< aj 
--< 22i ai = h and, owing to the facts that h • H and H is order convex, we 
have aj • H n G÷[0, u]; hence, h e (H n G+[0, u]). • 

4. INTERVAL E F F E C T  A L G E B R A S  

If G is a partially ordered Abelian group and u e G +, then the interval 
G+[0, u] can be organized into an effect algebra with unit u by taking G to 
be the restriction to G+[0, u] of  + on G. As such, the effect algebra partial 
order on G+[0, u] coincides with the restriction to G+[0, u] of the partial 
order on G. 

Definition 4.1. An effect algebra of  the form G+[0, u], or isomorphic to 
an effect algebra of  this form, is called an interval effect algebra. 

In Bennett and Foulis (n.d.) it is shown that a sub-effect algebra of an 
interval effect algebra is again an interval effect algebra. In Foulis et al. 
(1994) it is proved that the class of interval effect algebras is closed under 
the formation of Cartesian products, horizontal sums, and tensor products. 

Example 4.2. The interval effect algebra R+[0, 1] is called the standard 
scale algebra. More generally, a totally ordered effect algebra is called a 
scale algebra. 

If ~ is a one-dimensional Hilbert space, then the standard effect algebra 
E ( ~ )  is isomorphic to the standard scale algebra R+[0, 1]. 

Definition 4.3. A probability measure on an effect algebra E is a morph- 
ism to: E --> R+[0, 1] from E to the standard scale algebra. 

Since a probability measure ~o on an effect algebra E is a morphism, 
its effect kernel I := to-~(0) is an ideal in E. It can be shown that every 
interval effect algebra admits at least one probability measure and that, 
conversely, if there are enough probability measures on E to determine the 
partial order <-, then E is an interval effect algebra (Bennett and Foulis, n.d.). 

If E is an effect algebra and K is an Abelian group, a mapping qb: E --> 
K is called a K-valued measure iff, for p, q • E with p ± q, q~(p ~ q) = 
qb(p) + ~b(q). A proof of the following theorem can be found in Bennett and 
Foulis (n.d.). 

Theorem 4.4. If E is an interval effect algebra, then there is a partially 
ordered Abelian group G with a generative order unit u such that E = G÷[0, u] 
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and, for every Abelian group K, every K-valued measure qb: G+[0, u] --> K can 
be extended uniquely to a group homomorphism qb*: G ---> K. 

The group G in Theorem 4.4, which is unique up to a group isomorphism, 
is called the universal group for the interval effect algebra E. 

5. THE GROUP KERNEL OF A MORPHISM OF INTERVAL 
E F F E C T  ALGEBRAS 

In this section, it will be convenient to adopt the following notation. 

Standing Notation 5.1. For the remainder of this section, G is the univer- 
sal group with unit u for the interval effect algebra E = G+[0, u], Q is a 
partially ordered Abelian group with v ~ Q+, F = Q+[0, v] is organized into 
an interval effect algebra, and ~b: E ---> F is a morphism. Thus, ~: E --> Q is 
a Q-valued measure, so it admits a unique extension to a group homomorphism 
+*: G ~ Q. 

Since G ÷ = ssg(E) and F C Q+, we have +*(G ÷) C Q+, so +*: G ---> 
Q is order preserving and, by part (iv) of Theorem 3.3, ker(~b*) is an order- 
convex subgroup of G. Furthermore, qb* is normalized in the sense that +*(u) 
= v. In fact, given G and Q as above, it is clear that there is a one-to-one 
correspondence ~b ~ ~b* between morphisms ~b: E --> F and normalized order- 
preserving group homomorphisms ~b*: G --> Q. 

The morphism ~b: E ---> F has the effect kernel I := qb-l(0). We have 
to be careful to distinguish between the ideal I _C E and the kernel of the 
group homomorphism qb*: G ---> Q. Because qb* is an extension of ~b, we 
have I = ker(qb*) n E. 

Definition 5.2. The order-convex subgroup ker(~b*) C G is called the 
group kernel of  ~b. 

In the next two examples and in the remainder of  the paper we use the 
usual notation Z" for the additive Abelian group obtained by forming the n- 
fold Cartesian product of  Z with itself and we denote by Z,  the additive 
group of  integers modulo n. The standard positive cone in Z" is understood 
to be 

( Z + )  n " =  {(Zl ,  Zz . . . . .  zn) lzi ~ Z + for i = 1, 2 . . . . .  n} 

Example 5.3. Let G := Z 4 with the nonstandard positive cone 

G ÷ := {(x,y, z, w)lx,  y, z, w E Z ÷, w -< y + z} 

and with the unit u := (1, 1, 1, 1). Let Q = z 3 with the standard positive 
cone Q+ :=  (Z+) 3 and with the unit v := (1, 1, 1). The mapping +*: G 
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Q given by fi*(x, y, z, w) "= (x, z, w) is a group epimorphism with fi*(u) 
-- v and fi*(G +) = Q+. The interval effect algebra E = G+[0, u] is isomorphic 
to the 12-element orthomodular lattice G j2 (Kalmbach, 1983, Figure 9.4) and 
G is its universal group. The interval effect algebra F = Q+[0, v] is isomorphic 
to the eight-element Boolean algebra 23 and Q is its universal group. The 
restriction fi: E --) F of  fib* to E is a surjective morphism of effect algebras. 
The effect kernel of fi is I := fi-l((0, 0, 0)) = {(0, 0, 0, 0), (0, 1, 0, 0)} 
and its group kernel is ker(fi*) = {(0, y, 0, 0) ly e Z}. 

Example 5.4. The Wright triangle E = W14 "= G+[0, u] (Foulis et al., 
1992, Example 2.13) is a 14-element orthoalgebra with universal group G 
= Z 4, nonstandard positive cone 

G + =  { (x, y, z, w) l x, y , z , w  ~ Z + , w - < x + y  + z }  

and unit u = (1, 1, 1, I). Let Q := Z 3 × z2 and define a group epimorphism 
fi*: G ---) Q for (x, y, z, w) ~ G by 

fi*(x, y, z, w) :=  (x, y, z, ct), where ct - z + w (mod 2) 

Then ker(fi*) A G ÷ = {(0, 0, 0, 0)}, so, by Theorem 3.3, Q can be organized 
into a partially ordered Abelian group with positive cone Q÷ "= fi*(G+). Let 
v := (1, 1, 1, 0) = fi*(u) ~ Q and let F = Q÷[(0, 0, 0, 0), v]. Then F is a 
14-element orthoalgebra with Q as its universal group, the restriction fi of 
fi* to E is a bijective morphism fi: E --~ F, the effect kernel of ~b is I = { (0, 
0, 0, 0)} C E, but fi is not even an effect algebra homomorphism, let alone 
an isomorphism. 

As Example 5.4 illustrates, the articulation between morphisms and 
kernels that obtains for groups, rings, Boolean algebras, orthomodular lattices, 
and so on may fail in the category of interval effect algebras. It is the group 
kernel, not the effect kernel, that plays the crucial role for morphisms of 
interval effect algebras. This observation suggests the following definition. 

Definition 5.5. A morphism fi: E ---) F is said to be regular iff its group 
kernel, ker(fi*), coincides with the subgroup (/) generated by its effect kernel 
/ = f i - ' ( 0 ) .  

Lemma 5.6. A morphism fi: E ---) F is regular iff its group kernel, 
ker(fi*), is a directed subgroup of G. 

Proof Let I = fi-I(0). If ker(fi*) = (/), then ker(fi*) is directed by 
Lemma 3.1. Conversely, suppose ker(d/)*) is directed. Since fi* is an extension 
of fi, we have I = ker(fi*) N E, so ker(fi*) = (/) by Lemma 3.9. • 

The morphism in Example 5.3 is regular, but the morphism in Example 
5.4 is not. 
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6. R E G U L A R  QUOTIENTS OF INTERVAL E F F E C T  ALGEBRAS 

According to the following theorem, an ideal I in an interval effect 
algebra E induces a regular morphism in a natural way. 

Theorem 6.1. Suppose G is the universal group for the interval effect 
algebra E = G+[0, u] and let I be an ideal in E. Let qb*: G --> Q be the 
natural group epimorphism with kernel ocs(/) onto the quotient group Q = 
G/ocs(/), organize Q into a partially ordered Abelian group with positive 
cone Q+ := ~b*(G+), let v := ~b*(u), and define F := Q+[0, v] to be the 
corresponding interval effect algebra. Then v is a generative order unit in Q 
and the restriction qb of dp* to E is a regular morphism ~b: E --> F with effect 
kernel ~-1(0) = ocs(/) fq E. 

Proof By part (iii) of Theorem 3.3, Q+ = ~b*(G +) is a cone in Q. Since 
u is a generative order unit in G and ~b*: G ---> Q is an order-preserving 
epimorphism, it follows that v = ~b*(u) is a generative order unit in Q. 
Clearly, ~: E ---> F is a morphism with effect kernel ~b-l(0) = ker(~b*) ¢q E 
= ocs(/) fq E. By part (ii) of Lemma 3.5, ocs(/) is a directed subgroup of 
G, so ~b: E --~ F is regular by Lemma 5.6. II 

Definition 6.2. Let G be the universal group for the interval effect algebra 
E = G+[0, u] and let I be an ideal in E. Then the interval effect algebra Q+[0, 
v] in Theorem 6.1 is called the regular quotient effect algebra of E modulo 
I (in the category of interval effect algebras), and is written as E/ocs(/). The 
morphism qb: E ---> E/ocs(/) in Theorem 6.1 is called the regular quotient 
morphism. 

Suppose G is the universal group for E = G÷[0, u], I is an ideal in E, 
and ~b*: G ---> Q is a group epimorphism with ker(~b*) = ocs(/). Then Q can 
be organized into a partially ordered Abelian group with Q÷ := d~*(G+), Q 
is isomorphic to the quotient group G/ocs(/), and Q+[0, ~b*(u)] is isomorphic 
to the regular quotient E/ocs(/). Therefore, when convenient, we shall indulge 
in a slight abuse of notation and terminology by identifying E/ocs(/) with 
Q+[0, ~b*(u)] and referring to ~b as the regular quotient morphism. 

As a first indication that Definition 6.2 is consistent with our usual 
understanding of quotients, we submit the following result, which, roughly 
speaking, says that the regular quotient (El × E2)/ocs(EO is E~. 

Theorem 6.3. If Et and E2 are interval effect algebras, E = E1 × E2 is 
the effect-algebra Cartesian product, and I = El × {0}, then E/ocs(/) is 
isomorphic to E2. 

Proof. Let Ei = Gi+[0, ui], where Gi is the universal group for El, i = 
1, 2. By Foulis et al. (1994), G := Gl × G2, with the positive cone G ÷ := 
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Gi ~ × G~ and with generative order unit u := (ul, u2), is the universal group 
for El × E2. Thus, (I) = {(gl, 0) lgl  e Gl} is an order convex subgroup of 
G, so (/) = ocs(/). The projection mapping qb*: G ---) G2 given by qb*(g t, 
g2) := g2 for all (gl, g2) E G is a group epimorphism with ker(qb*) = (/) 
= ocs(/) and qb*(G +) = G~, so (El x E2)/ocs(/) is isomorphic to G~[0, u2] 
= E 2. • 

Definition 6.4. Let G be the universal group for E = G+[0, u] and let I 
be an ideal in E. 

(i) I is closed iff I = ocs(/) N E. 
(ii) The closure of  the ideal I is I* "= ocs(/) fq E. Thus, I is closed iff 

I = I*. 

Lemma 6.5. Let G be the universal group for E = G+[0, ], let I be an 
ideal in E, and let qb: E --~ E/ocs(/) be the regular quotient morphism. 

(i) I C I* = ker(~b*) I"3 E. 
(ii) ocs( / )  = ocs(l*) .  
(iii) I* is a closed ideal in E. 
(iv) E/ocs(/) = E/ocs(I*). 
(v) I is closed i f f y  ~ ssg(/), p E E, p -< y =:~ p ~ I. 
(vi) If I is closed, then (/) = ocs(/). 

Proof Part (i) is obvious. To prove part (ii), note that ocs(/) C ocs(l*) 
follows from the fact that 1 C I*. Conversely, I* = ocs(/) fq E C ocs(/), so 
ocs(l*) C_ ocs(/). 

Because ocs(/) is a subgroup of  G, it is clear that I* = ocs(/) A E is 
closed under O. If p ~ E and 0 -< p --< q ~ ocs(/) FI E, then, owing to the 
fact that ocs(/) is order convex, p E ocs(/) N E. Therefore ocs(/) r'l E is an 
ideal in E. By part (ii), I* = ocs(l*) f"l E, so I* is a closed ideal, and the 
proof of part (iii) is complete. 

Part (iv) is an obvious consequence of  parts (ii) and (iii) and part (v) 
follows directly from part (i) of Lemma 3.5. To prove part (vi), suppose that 
I = ocs(/) f"l E. Then, by Lemma 3.9, ocs(/) = (ocs(/) f-I E) = (/). • 

Clearly, the closed ideals in an interval effect algebra E are precisely 
the kernels of regular morphisms on E. We suspect that the converse of part 
(vi) of  Lemma 6.5 fails, but we do not know of  an exat,,ple to show this. 

Example 6.6. Let Z2 be the additive group of integers modulo 2 and let 
G "= Z X (Z2) 3. Define a cone G ÷ in G as follows: (x, ct, 13, 3") E G ÷ iff x 
> 1, or x = 1 and one of et, 13, 3' is nonzero, or x = 0 and ct = 13 = 3' = 
0. Then u := (3, 0, 0, 0) is a generative order unit in G and G is the universal 
group for the interval effect algebra Fa~6, called the Fano effect algebra. 
[The atoms in Fal6 can be identified in a natural way with the points in the 
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Fano projective plane (Bennett and Foulis, 1993, Section 7.] Let I := {(0, 
0, 0, 0), (1, I, 1, 1)}. Then (/) = {(n, n, n, n ) t n  E Z}, where the last three 
components are understood to be reduced modulo 2. Note that for the given 
partial order on G, 

(0, 0, 0, 0) -< (1, I, 0, 0) --< (2, 0, 0, 0) ~ (/) 

but (1, 1, 0, 0) g (/), so (/) 4: ocs(/). Indeed, if (x, a, 13, ~) ~ G, let n E 
Z + with 1 + lxl --< n, and note that 

- (n ,  n, n, n) ~ (x, cx, 13 ~/) _< (n, n, n, n) 

so ocs(/) = G by part (i) of Lemma 3.5. Consequently, I is not a closed ideal 
in Fal6, and in fact I* = Fas6. 

Lemma 6. 7. Let a be a nonisotropic atom in an interval algebra E with 
universal group G. Then I := {0, a} is an ideal in E, (/) = (a), and, if (a) 
is order-convex, then I is a closed ideal in E. 

P r o o f  That I is an ideal and (/) = (a) is clear. Assume (a) = (/) is 
order-convex so that (a) = ocs(/). Suppose I fails to be closed. Then there 
is an element p ~ ocs(/) n E = (a) N E such that p ~ I. Since p E (a), 
there exists n ~ Z such that 0 -< p = na <-- u. Because 0, a ~ L it follows 
that n 4: 0, 1. Also, since a, na ~ G ÷, we cannot have n < 0. Therefore, n 
-> 2, so 2a -< u, contradicting the fact that a is nonisotropic. • 

In Examples 5.3 and 6.6 above and Examples 9.1, 10.1, and 10.2 below, 
the ideal I has the form I = {0, a}, where a is a nonisotropic atom in the 
given interval effect algebra E. Only in Example 6.6 does the cyclic subgroup 
(/) = (a) of  G fail to be order-convex. Therefore, in all of these cases except 
for Example 6.6, the ideal I = {0, a} is closed by Lemma 6.7. 

By part (iv) of Lemma 6.5, in forming regular quotients of an interval 
effect algebra E by ideals I in E, we only need to consider closed ideals. As 
is easily verified, the closed ideals in E form a complete lattice under C 
which is isomorphic to the complete lattice of all directed and order-convex 
subgroups of the universal group G of E. The closed ideals I in E that are 
the kernels of surjective regular morphisms ~b: E ~ F are the analogues of 
normal subgroups in group theory. (See Section 9 below, where we address 
the question of surjectivity.) 

7. THE BOOLEAN CASE 

In this section we sketch a proof showing that Definition 6.2 is consistent 
with the usual definition of a quotient of a Boolean algebra by a Boolean 
ideal. Thus, for the remainder of the section, we assume that X is a compact  
Hausdor f f  totally disconnected topological space. 
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We regard Z x := {flf: X ---> Z} as an additive group under pointwise 
operations. The Abelian group Z x is understood to be partially ordered by f 
--< g ifff(x) -< g(x) for all x E X, with the corresponding positive cone (Z*) x. 
We define G(X) to be the subgroup of Z x consisting of all functions f: X 
Z that are continuous when Z is given the discrete topology. The Abelian 
group G(X) is partially ordered by the induced positive cone G(X)* := G(X) 
n (z+) x. 

Because X is compact, a function f e Z x belongs to G(X) iff it can be 
written in the canonical form 

f = ~ ai~ci 
i=l 

where ×q is the characteristic set function of Ci C X, each 6",. is a nonempty 
compact open subset of X, the pairwise disjoint sets Ci, i = 1, 2 . . . . .  n, 
form a partition of X, and al, a2 . . . . .  an are distinct integers. Elements of 
the interval effect algebra E(X) := G(X)+[0, ×x] are the characteristic set 
functions of compact open subsets of X; hence, E(X) is a Boolean algebra. 
By the Stone representation theorem (Stone, 1936), every Boolean algebra 
can be represented as an E(X), where X is uniquely determined up to a 
homeomorphism. 

Evidently, Xx is a generative order unit in G(X). Furthermore, G(X) is 
the universal group for E(X). Indeed if K is an Abelian group and ~b: E(X) 
---) K is a K-valued measure, then gb can be extended to a group homomorphism 
~b*: G(X) ---) K by defining 

d~*(f) := ~ a~(Xq ) 
i=1 

where f E G(X) is expressed in canonical form. 
Let U be an open subset of X and let I(U) be the subset of E(X) consisting 

of all characteristic set functions ×c of compact open sets C C_ U. Clearly, 
I(U) is an ideal in E(X). Note that, for a Boolean algebra, ideals in the effect- 
algebra sense coincide with Boolean ideals in the usual sense. 

By a standard argument, every ideal in E(X) has the form I(U) for a 
uniquely determined open set U C X. Let Y := X\ U be the complement of 
U in X, noting that Y is a compact Hausdorff totally disconnected space under 
the relative topology inherited from X. Define +: E(X) ---> E(Y) by +(Xc) 
"= ×cnv for all compact open subsets C of X. Obviously, + is a Boolean 
homomorphism with kernel I(U). Using the fact that X admits a basis of 
compact open sets, a straightforward argument shows that ~b: E(X) ~ E(Y) 
is surjective. Therefore, d~ induces a Boolean isomorphism of the usual 
Boolean quotient algebra E(X)/I(U) onto the Boolean algebra E(Y). 
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Now ~b: E(X) ---> E(Y) C G(Y), ~b is a G(Y)-valued measure, and G(X) 
is the universal group of E(X), so there is a uniquely defined group homomor- 
phism ~b*: G(X) ---> G(Y) that agrees with ~b on E(X). Since E(Y) generates 
G(Y) and &(E(X)) = E(Y), it follows that ~b*: G(X) ---> G(Y) is surjective. 
Also, it is clear that ~b*(G(X) ÷) = G(Y) +. Using the canonical form of elements 
in G(X), we verify that 

ker(~b*) = {f e G(X)If(Y) = 0} = (I(U)) 

and it follows that ker(~b*) = ocs(I(U)). Therefore the regular quotient effect 
algebra E(X)/ocs(l(U)) can be identified with 

G(Y)+[0, d?*(×x)] = G(Y)+[ 0, Xr] = E(Y) 

which in turn is isomorphic to the corresponding quotient Boolean algebra 
E(X)/I(U). 

8. QUOTIENTS OF STANDARD E F F E C T  ALGEBRAS 

In this section let ~ be a Hilbert space, let B(~)  be the *-algebra of 
all bounded operators on ~ ,  and let ~ ( ~ )  be the group under addition of all 
self-adjoint operators A = A* ~ B(~).  We organize ~ ( ~ )  into a partially 
ordered Abelian group with positive cone 

~+(~)  := {AEjA e ~(~)}  = {BB*IB e B(~)} 

and consider the standard effect algebra E(~)  := ~3+(~)[0, 1 ]. By Corollary 
4.7 of  Bennett and Foulis (n.d.), ~ ( ~ )  is the universal group for E(~) .  Proofs 
of most of the observations below follow either from Section 6 of Greechie 
et al. (1995) or from standard operator-theoretic arguments. 

Denote by P ( ~ )  the set of all projection operators P = p2 E wo(~), 
noting that P ( ~ )  is a sub-effect algebra of E(~)  and that, as such, it forms 
a complete orthomodular lattice. If P e E(~) ,  the order ideal ~+[0, P] :=  
{A ~ ~ (~ )10  ----- A --< P} is an effect ideal in E(~)  if and only i f P  e P(~) .  
If P e P(~) ,  then 

~+[0, P] = {A E E(~) IA = AP = PA} 

and 

~+[0, P'] = {A • E (~ ) IAP  = PA = O} 

Furthermore, 

(~+[0, P']) = ocs(~+[0, P']) = {A e ~ ( ~ ) I A P  = PA = 0} 

so '6+[0, P']  is a closed ideal in E(YQ. 
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Let P E P ( ~ )  with P 4: 0, ! and let Jbt be the closed linear subspace 
of Ye given by At := P(Y~). There is a rather natural order-preserving group 
epimorphism (qbe)*: ~3(Y~) --) ~3(~) given by ((~e)*A)c~ := PAc~ for all c~ 

kt, and we have 

ker((Cbe)*) = {A ~ w~(~)IPAP = 0} 

Of course, ker((qbe)*) is order-convex, but it is not directed. The restriction 
~e: E(Y~) ---) E(A~) of (qbp)* to E(Y~) is a surjective effect morphism with 
effect kernel 

(dPe)-~(0) = ~+[0, P'] = {A ~ E (~ ) IAP  = PA = 0} 

However, in spite of the fact that ~p: E(~)  --+ E(A/t) is an important effect 
algebra morphism from the point of view of quantum logic, it is not regular. 
In fact, the directed order-convex subgroup 

((qbp)-l(0)) = (~+[0, P'])  = {A ~ ~ ( ~ ) I A P  = PA = 0} 

is a proper subgroup of ker((dPp)*) = {A ~ ~(Ye)IPAP = 0}. 
With the notation of the last paragraph, let ~ be the additive subgroup 

of B(~)  given by 

:= {C ~ B ( Z ) I P ' C  = CP = 0} 

and let 9- = qJ(~t) × ~ .  Define the group epimorphism (qbe)*: ~3(Y~) ---> 9. 
by (+p)*A = ((¢Pe)*A, PAP') for all A E ~(~) .  Then 

ker((+e)*) = {A ~ ~(Y~)IAP = PA = 0} = (~+[0, P']) 

is a directed order-convex subgroup of ~+(~),  so we can organize 9. into a 
partially ordered Abelian group with 9-+ := +*(~÷(~)). The restriction ~ ,  
of (~,)* to E(~)  is a regular surjective effect-algebra morphism qbe: E(Ye) 
--> 9_+[(0e, 0), (le,  0)], where 0p and le are the zero and identity operators 
in B(al/t). Thus, the regular quotient E(Z)/ocs(~+[0, P']) is not isomorphic 
to E ( ~ )  as one might expect, but rather to an interval in 9_ = q3(~) × ~.  

A density operator on ~ is a trace-class operator W ~ cr+(Y~) with tr(W) 
= 1. Such an operator determines a probability measure tow: E (~ )  ---> R÷[0, 
1] according to tow(A) := tr(WA) for all A ~ E(Z),  and the unique extension 
of tow to a group homomorphism (tow)*: ~ ( ~ )  ---) R is given by (tow)*(A) 
• = tr(WA) for all A ~ ~(~) .  I f P  ~ P(~)  is the projection onto the orthogonal 
complement of the null space of W, then the effect kernel of tow is 

(tow)-I(0) = {A ~ E(~) IAP = PA = 0} = ~+[0, P']  

However, in general, tow is not a regular morphism because ocs(~+[0, P']) 
= (~+[0, P']) is not equal to the group kernel ker((tow)*). 
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In summary, if W is a density operator on ~ and P is the projection 
onto the orthogonal complement At of the null space of W, then there are 
three surjective effect-algebra morphisms dop: E ( ~ )  --> E(~f)/ocs03+[0, P']), 
dpp: E ( ~ )  ---> E(At), and tow: E ( ~ )  ---> R+[0, 1], all with the same effect kernel 
{A e E ( ~ ) I A P  = PA = 0}, but with three group kernels 

ker((~bp)*) C ker((~e)*) C ker((tow)*) 

which, in general, are all different. [If W represents a pure state, so that W 
= P, then ker((qbp)*) = ker((tow)*).] All of  this will have to be reconciled 
in any general theory of quotients of effect algebras. 

9. S U R J E C T I V I T Y  

The traditional mathematical notion of  a quotient leads one to expect 
that a regular quotient morphism do: E --> E/ocs(/) ought to be surjective. The 
following example shows that, for interval effect algebras, this expectation is 
not necessarily fulfilled. 

Example 9.1. Let G := Z 5, with the positive cone 

G + : =  { (x, y, z, p, q) ~ (Z+) 51q < x + y  + z + p }  

and with the generative order unit u := (1, 1, 1, 1, 2). There are eight atoms 
and 36 elements in the effect algebra FL36 := G+[0, u], called the Frazier-Lock 
cube. In fact, FL36 is an orthoalgebra. Let I := {(0, 0, 0, 0, 0), (1, 0, 0, 0, 
0)}, noting that 1 is an ideal in FL36, and (/) = {(n, 0, 0, 0, 0)In ~ Z} is 
an order-convex subgroup of  G. The mapping do*: Z 5 ---> Z 4 given by do*(x, 
y, z, p, q) := (y, z, p, q) is a group epimorphism with ker(do*) = (/) = ocs(/), 
and do*(G +) = (Z+) 4, the standard positive cone in Z 4. Therefore, FL36/ocs(/) 
can be identified with (Z+)4[(0, 0, 0, 0), (1, 1, 1, 2)], which is a 24-element 
effect algebra isomorphic to the Cartesian product of the Boolean algebra 23 
and a chain with three elements. With the notation of  Foulis et al. (1994, 
Example 4.3), this is the rectangular trellis RT(1, 1, 1, 2). The image of FL36 
under the regular morphism do consists of  all elemen~ in FL36/ocs(1) with 
the exception of  (1, l, 1, 0) and its orthosupplement (0, 0, 0, 2). 

There seems to be no reasonable way to repair the lack of surjectivity 
of the regular morphism do in Example 9.1. For instance, one could propose 
that the true quotient of  FL36 by I ought to be the image do(FL36) of  FL36 in 
Z 4 under do, but it turns out that do(FL36) is not even a sub-effect algebra of 
the interval effect algebra (Z+)4[(0, 0, 0, 0), (1, 1, 1, 2)]. In fact, there is no 
interval effect algebra that is an image of  FL36 under a morphism with I as 
its effect kernel. Evidently the difficulty is simply that, even though I is 
closed, it is not a "well-behaved" ideal. 
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For surjective regular quotient morphisms, we have the following 
theorem. 

Theorem 9.2. Let G be the universal group of E = G÷[0, u], let Q be a 
partially ordered Abelian group, let v be a generative order unit in Q÷, and 
let F = Q÷[0, v]. Then, if +: E --> F is a surjective regular morphism, it 
follows that Q is the universal group for F. 

Proof Let ~b*: G ---> Q be the unique extension of  +: E ---> F to a group 
homomorphism. Suppose K is an Abelian group and that K: F ---> K is a K- 
valued measure. Then K o ~b: E ---> K is also a K-valued measure, so it can 
be extended to a group homomorphism (K o d~)*: G ---> K. Evidently, 

(K ° +)*(ker(d~*) fq E) = K(qb(ker(~b*) A E)) = {0/ 

whence {ker(~b*) fq E) C ker((qb o K)*). Since +: E ---) F is a regular morphism, 

ker(~b*) = (qb-l(0)) = (ker(+*) f) E)) C_ ker((+ o K)*) 

and it follows that there is a group homomorphism K*: Q ---> K such that K* 
o ~b* = (K o qb)*. Suppose q E F. Since ~b: E --> F is surjective, there exists 
p E E with q = qb(p) and it follows that 

K*(q) = K*(qb(p)) = K*(~b*(p)) = (K ° qb)*(p) = (K ° ~b)(p) = K(q). 

Therefore, the group homomorphism K* is an extension of  K. • 

In Example 9.1, it turns out that, in spite of  the fact that the regular 
morphism qb is not surjective, the group Z 4 with the standard positive cone 
(Z+) 4 and the order unit (1, 1, 1, 2) is the universal group for FL36/ocs(1). 
As a matter of fact, we do not know of an example in which the conditions 
in Theorem 6.1 hold, but Q is not the universal group of  F. 

10. Q U O T I E N T S  OF  O R T H O A L G E B R A S  AND 
O R T H O M O D U L A R  L A T T I C E S  

There are orthoalgebras that are not interval effect algebras, but they 
are the exception rather than the rule, and they are not of great interest in 
quantum logic because they never have a "full set of  states" (Bennett and 
Foulis, n.d.). The following example shows that the regular quotient of  an 
interval orthoalgebra by an ideal need not be an orthoalgebra. Thus, the 
class of interval orthoalgebras is not closed under the formation of regular 
quotients, a fact that provides further justification for the study of  effect 
algebras that are more ge~_eral than orthoalgebras. 
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Example  I0.1. As in Example 5.4, let Wi4 = G÷[0, u] be the Wright 
triangle with universal group G = Z 4, positive cone 

G ÷ =  { ( x , y , z , w ) l x ,  y , z , w  ~ Z + , w < - x + y  + z }  

and unit u = (1, 1, 1, 1). Let I := {(0, 0, 0, 0), (0, 1, 0, 1)}, noting that I 
is an ideal in W|4. A calculation shows that 

ocs(/) = (/) = {(0, n, 0, n) ln E Z} 

and that the mapping ~b*: G ~ Z 3 defined for (x, y, z, w) e G by 

~b*(x, y, z, w ) : =  (x, z, x + y + z - w) 

is a group epimorphism with kernel (/). Evidently, ~b*(G ÷) = (Z÷) 3 is the 
standard positive cone in Z 3, and v := ~b*(u) = (1, 1, 2). Thus, Wla/OCS(/) 
is isomorphic to (Z÷)3[0, v], the 12-element effect algebra obtained by taking 
the Cartesian product of  the Boolean algebra 22 with the three-element chain 
Z÷[0, 2]. Again with the notation of  Foulis et al. (1994), this is the rectangular  
trellis RT( I ,  1, 2). The element (0, 0, 1) ~ (Z+)3[0, v] is isotropic, so W14/ 
ocs(/) is not an orthoalgebra. 

In the class of  orthomodular lattices, there is already a well-developed 
theory of  quotients. Indeed, if L is an OML, then a lattice ideal I in L is 
called a p-ideal  iff it is closed under perspectivity. For such an ideal, the 
quotient L/1, defined in a natural way, is again an OML (Kalmbach, 1983). 
We do not know of an example in which factoring a p-ideal I from an interval 
orthomodular lattice L produces anything other than L/ocs(/) as given by 
Definition 6.2. However, in an OML there are generally lots of effect algebra 
ideals that are not p-ideals, and we are now in a position to factor them out, too. 

Example  10.2. Let G -- Z 4 with the nonstandard positive cone 

G ÷ = {(x,y, z, w) l x ,  y , z ,  w E Z ÷, w <--y + z} 

and generative order unit u = (1, 1, 1, 1), and let G12 = G+[0, u] as in 
Example 5.3. Let I := {(0, 0, 0, 0), (0, 1, 0, 0)}, noting that I is a lattice 
ideal, but not a p-ideal, in the OML Gt2. Also, ocs(/) = (/) = {(0, n, 0, 0)In 

Z} and the mapping ~b*: G --~ Z 3 given by ~b*(x, y, z, w) := (x, z, w) is 
a group epimorphism with kernel (/). Evidently, d~*(G ÷) = ( 2 + )  3 and ~b*(u) 
= (1, 1, 1). Thus, GiJocs( / )  is the eight-element Boolean algebra 23. Here, 
both G12 and G12/ocs(/) are OMLs, and the regular quotient morphism 0: 
Gl~ --~ G J o c s ( / )  is surjective, but it is not  an OML homomorphism. (The 
kernel of  an OML homomorphism is always a p-ideal.) In Foulis and Bennett 
(1994), it is shown that an effect-algebra morphism between OMLs is a 
homomorphism of  OMLs iff it is an effect-algebra homomorphism. Indeed, 
~b is not an effect-algebra homomorphism because, for instance, the elements 
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(0, 0, 1, I) and (0, 1, 0, 1) are disjoint in Gi2, but their images (0, 1, 1) and 
(0, 0, 1) under qb are not disjoint in 2 3. 
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